目前的学习,是建立在大量数据上的计算能力进步了
如alphago据说存了无穷多的棋谱
如IponeX的人脸识别,就是以几十万人的脸谱为基础
ML在色彩处理上是有很大局限性的
ML是基于数理统计的向量化而已,在一定程度上提高了准确率,但是也有其极限,这个是算法本身特性决定的,数据量再大也无法突破,只能是无限接近,特定算法只能用于特定场景,人脸识别,棋谱都需要不同的对应算法,这些算法都需要人为的去优化,以达到最优效果。
颜色比较特殊,计算机处理的是数字化数据,非线性连续的,这就给ML带来挑战,需要基础图像识别理论的突破来解决。
颜色比较特殊,计算机处理的是数字化数据,非线性连续的,这就给ML带来挑战,需要基础图像识别理论的突破来解决。